Measuring impedance with Moku:Go (part 1)
Measuring resistance with Moku:go and Python
- 
                        Moku:Go
                        
                        
                            Moku:Go General Moku:Go Arbitrary Waveform Generator Moku:Go Data Logger Moku:Go Digital Filter Box Moku:Go FIR Filter Builder Moku:Go Frequency Response Analyzer Moku:Go Logic Analyzer & Pattern Generator Moku:Go Oscilloscope & Voltmeter Moku:Go PID Controller Moku:Go Spectrum Analyzer Moku:Go Waveform Generator Moku:Go Power Supplies Moku:Go Lock-in Amplifier Moku:Go Time & Frequency Analyzer Moku:Go Laser Lock Box Moku:Go Phasemeter
- 
                        Moku:Lab
                        
                        
                            Moku:Lab General Moku:Lab Arbitrary Waveform Generator Moku:Lab Data Logger Moku:Lab Digital Filter Box Moku:Lab FIR Filter Builder Moku:Lab Frequency Response Analyzer Moku:Lab Laser Lock Box Moku:Lab Lock-in Amplifier Moku:Lab Oscilloscope Moku:Lab Phasemeter Moku:Lab PID Controller Moku:Lab Spectrum Analyzer Moku:Lab Time & Frequency Analyzer Moku:Lab Waveform Generator Moku:Lab Logic Analyzer/Pattern Generator
- 
                        Moku:Pro
                        
                        
                            Moku:Pro General Moku:Pro Arbitrary Waveform Generator Moku:Pro Data Logger Moku:Pro Frequency Response Analyzer Moku:Pro Oscilloscope Moku:Pro PID Controller Moku:Pro Spectrum Analyzer Moku:Pro Waveform Generator Moku:Pro Lock-in Amplifier Moku:Pro Laser Lock Box Moku:Pro Digital Filter Box Moku:Pro FIR Filter Builder Moku:Pro Phasemeter Moku:Pro Multi-instrument Mode Moku:Pro Logic Analyzer/Pattern Generator Moku:Pro Time & Frequency Analyzer
- Python API
- MATLAB API
- Arbitrary Waveform Generator
- Data Logger
- Digital Filter Box
- FIR Filter Builder
- Frequency Response Analyzer
- Laser Lock Box
- Lock-in Amplifier
- Oscilloscope
- Phasemeter
- PID Controller
- Spectrum Analyzer
- Time & Frequency Analyzer
- Waveform Generator
- Logic Analyzer & Pattern Generator
- Multi Instrument Mode
- Moku Cloud Compile
- Moku general
- LabVIEW
- mokucli
These two Python scripts accompany the application note “Measuring Impedance with Moku:Go, part 1, resistance”.
One port method
# moku example: Single-Port Impedance Test
#
# This example demonstrates how you can take an impedance of a device under
# test using the single-port method
#
# Initializing the Instrument and Functions
from moku.instruments import FrequencyResponseAnalyzer
import numpy as np
import math
# Connect to your Moku by its ip address using FrequencyResponseAnalyzer('192.168.###.###')
# or by its serial number using FrequencyResponseAnalyzer(serial=123)
i = FrequencyResponseAnalyzer('192.168.73.1', force_connect=True)
try:
    
   # Configure Input Parameters
    i.set_output(1, 1)
    i.measurement_mode('In')
    
    # For Moku:Go
    i.set_frontend(1, "50Ohm", "DC", "10Vpp")
    
    # For Moku:Lab and Moku:Pro 
    #i.set_frontend(1, "50Ohm", "DC", "4Vpp")
    
    
     # Configure output sweep parameters
    i.set_sweep(start_frequency=6e4, stop_frequency=100, num_points=256,
                averaging_time=1e-6, settling_time=1e-6, averaging_cycles=1, settling_cycles=1)
    
    # Check the parameters of the FRA 
    print(i.summary())
    # Start the sweep 
    i.start_sweep(single=True)
    # Get a single sweep frame. This will block until the sweep is complete,
    # beware if you include low frequencies there will be a longer
    # measurement time for the frame
    
    frame = i.get_data()
    # Known  
    # Input Impedance for the Moku:Lab and Moku:Pro
    # For Moku:Go, this is the parallel resistance with a 50 ohm 
    # terminator resistor in parallel with the input
    Z_in = 50 #ohms 
    
    # Amplitude of the Output Voltage from the FRA
    V_out = 1 #Vpp
    
    
    # Output Impedance of the Moku
    # Make sure the correct one is put into your equation below
    Z_out_Go = 200 #ohms
    Z_out_Pro_Lab = 50 #ohms
    
    
    
    #Taking needed Power Measurement
    frequency = frame['ch1']['frequency']
    magnitude = frame['ch1']['magnitude']
    
    
    
    
    # Check Outputs
    #print(frame['ch1']['magnitude'])
    #print(frame['ch1']['frequency'])
    
    # Pull the Power Measurement at the Frequency of 300 Hz
    index_300hz = np.argmin(np.abs(np.array(frequency) - 300))
    dBm = magnitude[index_300hz]
    
    # Assuming Moku is expressing the dBm
    V_in = math.sqrt(8 * Z_in * ((10 ** (dBm / 10)) / 1000))
    print(f"The magnitude at 300 Hz is {dBm:.2f} dBm, which corresponds to {V_in:.4f} V.")
    
    
    # Calculate Z_DUT
    # Make sure the correct Z_out is being used
    Z_dut = ((V_out * Z_in) / V_in) - (Z_in + Z_out_Go)
    print(f"The impedance of the device under test is: {Z_dut:.2f} Ohms")
    
except Exception as e:
    print(f'Exception occurred: {e}')
finally:
    # Close the connection to the Moku device
    # This ensures network resources and released correctly
    i.relinquish_ownership()
Two port method
# moku example: Two-Port Impedance Test
#
# This example demonstrates how you can take an impedance of a device under
# test using the two-port method
#
#
from moku.instruments import FrequencyResponseAnalyzer
import numpy as np
import math
# Connect to your Moku by its ip address using FrequencyResponseAnalyzer('192.168.###.###')
# or by its serial number using FrequencyResponseAnalyzer(serial=123)
i = FrequencyResponseAnalyzer('192.168.73.1', force_connect=True)
try:
    # Configure output sweep amplitudes
    # Channel 1 - 1Vpp
    i.set_output(1, 1)
    # Configure output sweep parameters
    i.measurement_mode('In')
    i.set_sweep(start_frequency=10e4, stop_frequency=100, num_points=256,
                averaging_time=1e-6, averaging_cycles=1, settling_cycles=1,
                settling_time=1e-6)
    
    
     # For Moku:Go
    i.set_frontend(1, "50Ohm", "DC", "10Vpp")
    
    # For Moku:Lab and Moku:Pro 
    #i.set_frontend(1, "50Ohm", "DC", "4Vpp")
    
    # Start the single sweep
    i.start_sweep(single=True)
    # Get a single sweep frame. This will block until the sweep is complete,
    # beware if your range includes low frequencies!
    frame = i.get_data()
    
    # Known 
    # Note that Z_in will vary for Moku:Go based on the parallel resistance
    Z_in= 50 #ohms
    V_out = 1 #Vpp
    
    # Check the parameters of the FRA 
    print(i.summary())
    
    
    # Taking Power Measurement at 300 Hz from Input 1 and Input 2
    frequency_1 = frame['ch1']['frequency']
    magnitude_1 = frame['ch1']['magnitude']
    index_1_300hz = np.argmin(np.abs(np.array(frequency_1) - 300))
    magnitude_300hz_ch1 = magnitude_1[index_1_300hz]
    
    frequency_2 = frame['ch2']['frequency']
    magnitude_2 = frame['ch2']['magnitude']
    index_2_300hz = np.argmin(np.abs(np.array(frequency_2) - 300))
    magnitude_300hz_ch2 = magnitude_2[index_2_300hz]
    
    # Print the corresponding magnitude values at the desired frequency
    print(f"The magnitude of channel 1 at 300 Hz is: {magnitude_300hz_ch1:.4f} dBm")
    print (f"The magnitude of channel 2 at 300 Hz is: {magnitude_300hz_ch2:.4f} dBm")
    
    # Convert magnitudes from dBm to linear scale
    linear_magnitude_1 = 10 ** (magnitude_300hz_ch1 / 10)
    linear_magnitude_2 = 10 ** (magnitude_300hz_ch2/ 10)
    # Take the ratio of Channel 2 to Channel 1 
    linear_result = linear_magnitude_2 / linear_magnitude_1
    # Convert linear result back to dBm
    result_dB = 10 * np.log10(linear_result)
    # Print result (Ch2/Ch1)
    print(f"Channel 2 divided by Channel 1 results in: {result_dB:.4f} dBm")
    
    # Use the power ratio to calculate the impedance of your device under test 
    x = 10**(result_dB/10)
    power_ratio= np.sqrt(x)
    Z_dut = (power_ratio*Z_in)-Z_in
    print(f"The impedance of the device under test is: {Z_dut:.2f} Ohms")
    
except Exception as e:
    print(f'Exception occurred: {e}')
finally:
    # Close the connection to the Moku device
    # This ensures network resources and released correctly
    i.relinquish_ownership()
    
