Example Python script to implement the FIR Filter Box (plotting)
# pymoku example: FIR Filter Box Plotting Example
#
# This script demonstrates how to generate an FIR filter kernel with specified
# parameters using the scipy library, and how to configure settings of the FIR
# instrument.
#
# NOTE: FIR kernels should have a normalised power of <= 1.0. Scipy's firwin
# function conforms to this requirement.
#
# (c) 2019 Liquid Instruments
#
from pymoku import Moku
from pymoku.instruments import FIRFilter
from scipy.signal import firwin
from scipy import fft
import math
import matplotlib.pyplot as plt
from matplotlib.ticker import FuncFormatter
# Specify nyquist and cutoff (-3dB) frequencies
nyq_rate = 125e6 / 2**10 / 2.0
cutoff_hz = 1e3
# Calculate FIR kernel using 1000 taps and a chebyshev window with -60dB
# stop-band attenuation
taps = firwin(1000, cutoff_hz / nyq_rate, window='hamming')
# Connect to your Moku by its device name
# Alternatively, use Moku.get_by_serial('#####') or Moku('192.168.###.###')
m = Moku.get_by_name('Moku')
try:
i = m.deploy_or_connect(FIRFilter)
# Configure the Moku:Lab frontend settings
i.set_frontend(1, fiftyr=True, atten=False, ac=False)
i.set_frontend(2, fiftyr=True, atten=False, ac=False)
# Both filter channels are configured with the same FIR kernel. A
# decimation factor of 10 is used to achieve the desired nyquist rate and
# FIR kernel length of 1000.
i.set_filter(1, decimation_factor=10, filter_coefficients=taps)
i.set_filter(2, decimation_factor=10, filter_coefficients=taps)
# Channel 1 has unity input/output gain and acts solely on ADC1.
# Channel 2 has an input gain of 0.5, output gain of 2.0, input offset of
# -0.1V and acts on signal 0.5 * ADC1 + 0.5 * ADC2.
i.set_gains_offsets(1, input_gain=1.0, output_gain=1.0)
i.set_gains_offsets(2, input_gain=0.5, input_offset=-0.1,
output_gain=1.0)
i.set_control_matrix(1, 1.0, 0.0)
i.set_control_matrix(2, 0.5, 0.5)
# Set which signals to view on each monitor channel, and the timebase on
# which to view them.
i.set_timebase(-5e-3, 5e-3)
i.set_monitor('a', 'in1')
i.set_monitor('b', 'out1')
# Calculate and plot the quantized FIR kernel and transfer function for
# reference.
taps_quantized = \
[round(taps[x] * 2.0 ** 24 - 1) / (2 ** 24 - 1) for x in
range(0, len(taps))]
fft_taps = fft(taps_quantized)
fft_mag = [abs(fft_taps[x]) for x in range(0, len(fft_taps[0:499]))]
fft_db = [20 * math.log10(fft_mag[x]) for x in range(0, len(fft_mag))]
plt.subplot(221)
plt.plot(taps)
plt.title('Filter Kernel')
plt.ylabel('Normalised Value')
plt.grid(True, which='major')
plt.xlabel('Kernel Tap Number')
plt.subplot(222)
plt.semilogx(fft_db)
plt.title('Filter Transfer Function')
plt.ylabel('Magnitude (dB)')
plt.xlabel('Frequency (Hz)')
plt.grid(True, which='major')
# Set up the live FIR Filter Box monitor signal plot
plt.subplot(212)
plt.title("Monitor Signals")
plt.suptitle("FIR Filter Box", fontsize=16)
plt.grid(b=True, which='both', axis='both')
data = i.get_realtime_data() # Get data to determine the signal timebase
plt.xlim([data.time[0], data.time[-1]])
plt.ylim([-1.0, 1.0]) # View up to +-1V
line1, = plt.plot([], label='Channel A')
line2, = plt.plot([], label='Channel B')
ax = plt.gca()
ax.legend(loc="lower right")
ax.xaxis.set_major_formatter(FuncFormatter(data.get_xaxis_fmt))
ax.yaxis.set_major_formatter(FuncFormatter(data.get_yaxis_fmt))
ax.fmt_xdata = data.get_xcoord_fmt
ax.fmt_ydata = data.get_ycoord_fmt
# Continually update the monitor signal data being displayed
while True:
data = i.get_realtime_data()
line1.set_ydata(data.ch1)
line2.set_ydata(data.ch2)
line1.set_xdata(data.time)
line2.set_xdata(data.time)
plt.pause(0.001)
finally:
m.close()